Информатика студентам

>
   
   
Главная

Windows XP

Word 2003

Excel 2003

на предыдущую  на следующую

Показатели разброса или вариации

Вариация - это различие значений величин X у отдельных единиц статистической совокупности. Для изучения силы вариации рассчитывают следующие   показатели вариации: размах вариации, среднее линейное отклонение, линейный коэффициент вариации, дисперсия, среднее квадратическое отклонение, квадратический коэффициент вариации.

Размах вариации

Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

H=Xmax-Xmin

Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

Cреднее линейное отклонение

Cреднее линейное отклонение   - это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой - получим среднее линейное отклонение простое:

Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной - получим среднее линейное отклонение взвешенное:

Функция СРОТКЛ вычисляет среднее абсолютных значений отклонений точек данных от среднего, т.е. является мерой разброса множества данных.

Уравнение для среднего отклонения следующее:

Линейный коэффициент вариации

Линейный коэффициент вариации   - это отношение среднего линейного отклонения к средней арифметической:

лин коэф вариации

С помощью линейного коэффициента вариации можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.

Дисперсия

Дисперсия - это средний квадрат отклонений значений X от среднего арифметического значения. Дисперсию можно рассчитывать по формуле средней арифметической простой - получим дисперсию простую:

Если исходные данные X сгруппированы (имеются частоты f), то расчет дисперсии выполняется по формуле средней арифметической взвешенной - получим дисперсию взвешенную:

Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:

дисперсия

Если значения X - это доли совокупности, то для расчета дисперсии используют частную формулу дисперсии доли :

дисперсия доли.

Функция ДИСПР вычисляет дисперсию для генеральной совокупности. (Для дисперсии по выборке используется функция ДИСП). Дисперсией (s2) называют среднюю арифметическую квадратов отклонений результатов наблюдений от их средней арифметической.

Уравнение для дисперсии имеет следующий вид:

Для функции ДИСП используется формула

Функция ДИСПРА вычисляет дисперсию для генеральной совокупности. В расчете помимо численных значений учитываются также текстовые и логические значения, такие как ИСТИНА или ЛОЖЬ.

Cреднее квадратическое отклонение

Выше уже было рассказано о формуле средней квадратической, которая применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:

среднее квадратическое отклонение

Еще проще можно найти среднее квадратическое отклонение, если предварительно рассчитана дисперсия, как корень квадратный из нее:

сигма

Функция КВАДРОТКЛ возвращает сумму квадратов отклонений точек данных от их среднего.

Уравнение для суммы квадратов отклонений имеет следующий вид:

Функция СТАНДОТКЛОНП определяет среднее квадратическое или стандартное отклонение, равное арифметическому значению корня квадратного из дисперсии и имеющее ту же размерность, что и значение признака. Стандартное отклонение - это мера того, насколько широко разбросаны точки данных относительно их среднего.

СТАНДОТКЛОНП предполагает, что аргументы образуют всю генеральную совокупность. Если данные являются только выборкой из генеральной совокупности, то стандартное отклонение следует вычислять с использованием функции СТАНДОТКЛОН. Для больших выборок СТАНДОТКЛОН и СТАНДОТКЛОНП возвращают примерно равные значения.

СТАНДОТКЛОНП использует следующую формулу:

,

а СТАНДОТКЛОН -

Функция СТАНДОТКЛОНПА вычисляет стандартное отклонение по генеральной совокупности. В данном случае аргументами могут являться текст и логические значения.

Квадратический коэффициент вариации

Квадратический коэффициент вариации - это самый популярный относительный показатель вариации:

квадратический коэффициент вариации

Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 - вариация считает слабой, а если больше 0,333 - сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной, а средняя величина -   нетипичной   и ее нельзя использовать как обобщающий показатель этой совокупности.

Средние величины, характеризуя ряд наблюдений, не отражают изменчивости наблюдавшихся значений признака, т.е. вариацию. Обычно рассматриваются меры наблюдений вокруг средних величин. Средняя арифметическая является основным видом средних, поэтому ограничимся рассмотрением мер рассеяния наблюдений вокруг средней арифметической.

Сумма отклонений результатов наблюдений от средней арифметической не может характеризовать вариацию наблюдений около средней арифметической, т.к. эта сумма равна нулю. Обычно берут или абсолютные величины или квадраты разностей. В результате получают различные показатели вариации: среднее отклонение, дисперсию или среднеквадратичное отклонение.

в начало


на предыдущую  на следующую

Copyright © 2010-2024
Ющик Е.В. All Rights Reserved

E-mail:
mailto:yuschikev@yandex.ru?subject=Письмо автору

Рейтинг@Mail.ru