Информатика студентам |
|
|
Структурные средние величиныПомимо степенных средних в статистической практике в качестве описательных характеристик также используются средние структурные, среди которых наиболее распространены мода и медиана. Статистическая медианаСтатистическая медиана – это значение величины X, которое делит упорядоченную по возрастанию или убыванию статистическую совокупность на 2 равных по численности части. В итоге у одной половины значение больше медианы, а у другой - меньше медианы. Если X задан дискретно, то для определения медианы все значения нумеруются от 0 до N в порядке возрастания, тогда медиана при четном числе N будет лежать посередине между X c номерами 0,5N и (0,5N+1), а при нечетном числе N будет соответствовать значению X с номером 0,5(N+1). Например, имеются данные о возрасте студентов-заочников в группе из 10 человек - X: 18, 19, 19, 20, 21, 23, 23, 25, 28, 30 лет. Эти данные уже упорядочены по возрастанию, а их количество N=10 - четное, поэтому медиана будет находиться между X с номерами 0,5*10=5 и (0,5*10+1)=6, которым соотвествует значения X5=21 и X6=23, тогда медиана: Ме = (21+23)/2 = 22 (года). Если X задан в виде равных интервалов, то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:
где Ме – медиана; В ранее рассмотренном примере при расчете модального стажа (на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет) рассчитаем медианный стаж. Половина общего числа работников составляет (10+20+5)/2 = 17,5 и находится в интервале от 3 до 5 лет, а в первом интервале до 3 лет - только 10 работников, а в первых двух - (10+20)=30, что больше 17,5, значит интервал от 3 до 5 лет - медианный. Внутри него определяем условное значение медианы: Ме = 3+2*(0,5*30-10)/20 = 3,5 (года). Также как и в случае с модой, при определении медианы если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h. > Более точное определение медианы.Медианой (Ме) называется значение признака, приходящегося на середину ранжированной (упорядоченной) совокупности. Главное свойство медианы заключается в том, сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины: . Поскольку медиана - это число, которое является серединой множества чисел, то есть половина чисел имеют значения большие, чем медиана, а половина чисел имеют значения меньшие, чем медиана, то если во множестве четное количеств чисел, то за медиану принимают среднюю арифметическую двух чисел, находящихся в середине множества. Функция МЕДИАНАОбщий вид функции МЕДИАНА(число1;число2; ...) Число1, число2, ... - это от 1 до 30 чисел, для которых определяется медиана. При использовании функции надо учитывать следующие условия:
Статистическая мода Статистическая мода - это наиболее часто повторяющееся значение величины X в статистической совокупности. Если X задан дискретно, то мода определяется без вычисления как значение признака с наибольшей частотой. В статистической совокупности бывает 2 и более моды, тогда она считается бимодальной (если моды две) или мультимодальной (если мод более двух), и это свидетельствует о неоднородности совокупности. Например, на предприятии работает 16 человек: 4 из них - со стажем 1 год, 3 человека - со стажем 2 года, 5 - со стажем 3 года и 4 человека - со стажем 4 года. Таким образом, модальный стаж Мо=3 года, поскольку частота этого значения максимальна (f=5). Если X задан равными интервалами, то сначала определяется модальный интервал как интервал с наибольшей частотой f. Внутри этого интервала находят условное значение моды по формуле:
где Мо – мода; Например, на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет. Рассчитаем модальный стаж работы в модальном интервале от 3 до 5 лет: Мо = 3 + 2*(20-10)/(2*20-10-5) = 3,8 (года). Если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h. Функция МОДАМОДА(число1;число2; ...) Число1, число2, ... - это от 1 до 30 аргументов, для которых вычисляется мода. Можно использовать один массив или одну ссылку на массив вместо аргументов, разделяемых точкой с запятой. · если множество данных не содержит одинаковых данных, то функция МОДА возвращает значение ошибки #Н/Д. Функция КВАРТИЛЬВозвращает квартиль множества данных. Квартиль часто используются при анализе продаж для разбиения генеральной совокупности на группы. Например, можно воспользоваться функцией КВАРТИЛЬ, чтобы найти среди всех предприятий 25 процентов наиболее доходных. Синтаксис КВАРТИЛЬ(массив;часть) Массив> — массив или интервал ячеек с числовыми значениями, для которых определяются значения квартилей. Часть — значение, которое требуется вернуть.
Замечания Если массив пуст, функция КВАРТИЛЬ возвращает значение ошибки #ЧИСЛО!. Если значение аргумента «часть» не является целым числом, то оно усекается. Если часть < 0 или часть > 4, функция КВАРТИЛЬ возвращает значение ошибки #ЧИСЛО!. Функции МИН, МЕДИАНА и МАКС возвращают то же значение, что и функция КВАРТИЛЬ, если аргумент «часть» равен соответственно 0, 2 или 4. <<предыдущая || оглавление || следующая>> |
Copyright © 2010-2024 |